Типы осушителей сжатого воздуха. Как выбрать осушитель.

Типы осушителей сжатого воздуха. Как выбрать осушитель.
Принцип действия рефрижераторных, адсорбционных, мембранных осушителей.
ООО «ГК НТЦ»
Нижний Новгород, ул. Адмирала Нахимова, д. 13АН
+7 (831) 413-77-41

12.09.2018

Принцип действия рефрижераторных, адсорбционных, мембранных осушителей.

При использовании компрессорного оборудования на производстве частой проблемой становится образование конденсата в пневмосистеме. В процессе сжатия температура воздуха значительно повышается, он становится насыщен водяным паром. При попадании в пневмосеть, горячий воздух соприкасается с холодными стенами трубопровода, вследствие чего происходит процесс конденсации. Избыток влаги является серьезной проблемой для любого предприятия: трубопроводы подвергаются коррозии, при минусовых температурах конденсат может замерзать, что препятствует нормальному прохождению воздуха, выводит из строя оборудование. Влага является основной причиной выхода из строя клапанных систем. Таким образом, вопрос осушки сжатого воздуха является одним из самых значимых на любом производстве. В зависимости от типа используемого оборудования, условий окружающей среды, где оно располагается и требований к сжатому воздуху существует несколько различных способов удаления конденсата. Наибольшее распространение получили: рефрижераторные (холодильные), адсорбционные и мембранные осушители. Компания ГК НТЦ предлагает осушители таких брендов, как EKOMAK(Турция) и Kraftmann (Германия).

купить осушитель сжатого воздухакупить осушитель сжатого воздуха

Влажность воздуха. Основные понятия.

Самое общее определение можно сформулировать так: влажность - это мера, характеризующая содержание водяных паров в воздухе (или другом газе). На практике для количественного определения используют следующие понятия:

Абсолютная влажность - это величина, показывающая, какое количество паров воды содержится в заданном объеме воздуха. Это самое общее понятие, оно выражается в г/м3. При очень низкой влажности газа используется такой параметр как влагосодержание, единица измерения которого ppm (parts per million частей на миллион). Это абсолютная величина, которая характеризует число молекул воды на миллион молекул всей смеси. Ppm – более универсальная величина, она не зависит ни от температуры, ни от давления. Это и понятно количество молекул воды не может увеличиваться или уменьшаться при изменениях давления и температуры.

Относительная влажность - это понятие, используемое, как правило, в метеорологии. Оно определяется как отношение действительной влажности воздуха к его максимально возможной влажности. Другими словами, относительная влажность показывает, сколько еще влаги не хватает, чтобы при данных условиях окружающей среды началась конденсация. Данная величина характеризует степень насыщения воздуха водяным паром. Однако, относительная влажность неудобна для работы, так как она привязана к давлению, и к температуре газа. Более часто используется величина, называемая температурой точки росы.

Точка росы - это температура, при которой начинается процесс конденсации влаги. Практическое значение точки росы заключается в том, что оно показывает, какое максимальное количество влаги может содержаться в воздухе при указанной температуре. Действительно, фактическое количество воды, которое может удерживаться в постоянном объеме воздуха, зависит только от температуры. Понятие точки росы является наиболее удобным техническим параметром. Зная значение точки росы, мы можем утверждать, что количество влаги в заданном объеме воздуха не превысит определенного значения. Так, например, для точки росы +10°С количество влаги будет меньше или равно 9,51 г/ м3. Примерное максимальное количество влаги в воздухе в зависимости от температуры приведено в таблице:

Температура, 0С

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

Влажность,

Max, г/м3

0,29

0,45

07

1,08

1,61

2,37

3,42

4,98

6,86

9,51

13.04

17.09

23.76

31,64

41,83

 

Пример 1: Определение количества влаги в 1м3 воздуха:

Условия: Температура +20 °С, относительная влажность 60%.

Относительная влажность = (А / В) х 100%,

Где: А - фактическое содержание воды; В - содержание воды в состоянии насыщения (точка росы).

Воспользовавшись данными таблицы и вышеприведенной формулой, определяем фактическое содержание воды в состоянии насыщения при +20°С, что соответствует 17 г/м3. Тогда искомое количество воды равно 17 г/м3 х 0,6 = 10,2 г/м3.

При сжатии воздуха его способность удерживать влагу в виде пара зависит от степени уменьшения объема. Следовательно, если температура остается постоянной или существенно не возрастет, вода начнет конденсироваться. Сколько останется влаги при сжатии воздуха в компрессоре и сколько ее выпадет в осадок в виде конденсата?

Пример 2:  10 м3 атмосферного воздуха при +20 °С и 65% относительной влажности сжимается до

избыточного давления 7 бар (8 бар абсолютного). Сколько воды выпадет в конденсат?

Из приведенной выше таблицы видно, что при температуре +20 °С в воздухе может содержаться максимум 17.09 г/м3, а в 10 м3  соответственно 17,09 г/м3 х10 м3 = 170,9 г. При относительной влажности 65% воздух будет содержать170,9 г х 0,65 =111,1 г влаги. Объем сжатого воздуха при давлении 7 бар можно подсчитать, исходя из закона Бойля -Мариотта (При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно):

P1 x V1 = P2 x V2; V2 = (P1 x V1) / P2

где Р1 - атмосферное давление равное 1,013 бар;

V2 = ( 1,013бар х 10 м3 )/ (7+1,013)бар = 1,26 м3

Далее определяем, что 1,26 м3 воздуха при +20°С может удерживать максимум

17,09 г х 1,26 = 21,5 г влаги.

Количество конденсата равняется общему количеству воды, содержащемуся в атмосферном воздухе, минус количество воды, которое может вобрать в себя сжатый воздух, а именно: 111,1 г - 21,5 г = 89,6 г.

Таким образом, после сжатия почти 90 грамм воды выпадет в виде конденсата. Во избежание вредного воздействия, которое может оказать конденсат на состояние магистрали и работу пневматического оборудования, его необходимо удалить.

 

Отрицательные факторы присутствия влаги в пневмосистеме.

  • водный конденсат, смешиваясь с маслом, создает эмульсию, забивая полости пневматических систем, вызывая поломки;
  • конденсат вызывает коррозию линий подачи воздуха,оксидные обломки и пыль загрязняют пневматические устройства и приводят к их поломкам;
  • при отрицательной температуре конденсат может замерзать в трубопроводах и вызвать разрывы или значительно уменьшить проходимость;
  • при покраске капли жидкости приводят к неоднородности слоя краски;
  • при пневмотранспортировке порошкообразных материалов (в том числе в пескоструйных установках) избыточная влажность вызывает слипание и блокировку транспортируемого продукта;
  • чаще всего конденсат недопустим в фармацевтической, пищевой и электронной промышленности;

При планировании системы осушения для вашего производства можно воспользоваться следующими стандартами: Международный стандарт DIN ISO 8573-1: устанавливает 6 классов чистоты воздуха и соответствующее каждому классу предельно допустимое содержание различных видов примесей, в том числе и содержание влаги.

Класс очистки

Максимальное остаточное содержание масла, мг/м3

Максимальное остаточное содержание твердых частиц

Максимальное остаточное содержание влаги

размер частиц, мкм

кол-во частиц, мг/м3

г/м3

точка росы сжатого воздуха, °C

1

0,01

0,1

0,1

0,003

-70

2

0,1

1

1

0,117

-40

3

1

5

5

0,88

-20

4

5

15

8

5,953

+3

5

25

40

10

7,732

+7

6

-

-

-

9,356

+10

 

Существует аналогичный российский ГОСТ 17433-80. При выборе необходимого оборудования следует руководствоваться заданными для оборудования предельно допустимыми значениями содержания примесей и влажности.

Класс загрязненности

Размер твердой частицы, мкм,

Содержание посторонних примесей, мг/м ГОСТ 17433-80 (СТ СЭВ 1704-79) Промышленная чистота. Сжатый воздух. Классы загрязненности (с Изменением N 1), не более

 

не более

Твердые частицы

Вода (в жидком состоянии)

Масла (в жидком состоянии)

0

0,5

0,001


Не допускаются

1


5


1

 

2

   

500

Не допускаются

3


10


2

Не допускаются

4

   

800

16

5


25


2

Не допускаются

6

   

800

16

7


40


4

Не допускаются

8

   

800

16

9


80


4

Не допускаются

10

   

800

16

11

   

Не допускаются

12

 

12,5

3200

25

13

Не регламентируется


25

Не допускаются

14

   

10000

100

 

Примечания:

1. Содержание посторонних примесей указано для воздуха, приведенного к условиям: температура 293,15 К (20 °С) и давление 1013,25 гПа (760 мм рт.ст.).

2. Размер твердой частицы принимается по наибольшему измеренному значению.

 

Промышленное оборудование для осушения сжатого воздуха. Методы осушки.

Сжатие воздуха в компрессоре приводит к образованию конденсата, поэтому необходимо использовать дополнительный сепаратор для отделения влаги. Однако этого тоже недостаточно, поскольку сжатый воздух, расширяясь в оборудовании, охлаждается независимо от условий среды, что сопровождается дополнительным выделением конденсата. Поэтому и встает вопрос об использовании специальных осушителей, обеспечивающих необходимую точку росы. Например, если осушитель имеет точку росы +3 °С, то дополнительное охлаждение сжатого воздуха до температуры не ниже + 3 °С не приведет к образованию конденсата.  Существуют различные методы осушки воздуха:

Рефрижераторные осушители. Осушка охлаждением.

Это наиболее широко применяемый в промышленности и наиболее экономичный тип осушителя. Стоимость такого осушителя в диапазоне производительностей от 3 до 20 м3/мин составляет примерно 15-20% от стоимости компрессорного оборудования. Сжатый воздух охлаждается хладагентом, а выпавший конденсат отводится. Воздух обычно охлаждается противоположным потоком хладагента в два этапа: предварительный – воздух - воздух; главный – воздух - хладагент. При этом достигается точка росы + 3°С. Конструктивная схема осушителя рефрижераторного типа:

рефрижераторный осушитель

 

Адсорбционные осушители.

Данные осушители состоят из двух колонн: одна колонна осушает воздух, вторая в этот момент регенерируется. Переключение между колоннами происходит либо по таймеру (через определенный промежуток времени воздух перестает поступать в первую колонну, начинает поступать во вторую; в первой колонне происходит процесс регенерации) либо по датчику точки росы (в тот момент, как точка росы начинает расти, происходит автоматическое переключение колонн). Второй вариант установок считается более надежным и энергоэффективным. В адсорбционном осушителе молекулы газа или пара притягиваются молекулярными силами адсорбента. Осушительным агентом является специальный гель (например, селикогель), который адсорбирует влагу. После каждого рабочего цикла требуется восстановление свойств агента, для этого используются два контейнера - один для осушки, другой для регенерации. Восстановление может быть холодным или горячим. Осушители с холодным восстановлением стоят дешевле, для регенерации используется сжатый воздух (т.е. потери до 15%). Осушитель с горячим восстановлением работает в обменном режиме, атмосферный воздух подогревается и используется для регенерации. В зависимости от используемого геля можно достичь точки росы до -70°С. Существуют адсорбционные осушители, которые в качестве осушительного агента используют молекулярные решетки кристаллизованные алюмосиликаты или цеолиты сферической или гранулированной формы). Как и все адсорбербенты, они имеют внутренние капилляры с большой площадью поверхности. Конструктивная схема адсорбционного сушителя типа:

Адсорбционные осушители

 

Мембранные осушители.

Мембранный осушитель состоит из пучка полых волокон, которые открыты для водяных паров. Осушаемый воздух обтекает эти волокна. Осушка происходит за счет разницы давления между влажным воздухом внутри волокон и сухого воздуха, протекающего в обратном направлении. Для управления обратной продувкой не потребляется электрическая энергия, что позволяет использовать такие осушители во взрывоопасных средах. Одно из главных отличий от других осушителей заключается в следующем: мембранный осушитель в определенной пропорции уменьшает влажность воздуха, тогда как рефрижераторный и адсорбционные осушители понижают точку росы. Недостатком мембранных осушителей является их низкая пропускная способность и высокая стоимость.

мембранный осушитьель

 

Как выбрать осушитель сжатого воздуха.

При использовании на производстве поршневых компрессоров необходимо учитывать, что температура воздуха в конце сжатия у них выше, чем у винтовых компрессоров, таким образом, для эффективного удаления влаги требуется двухступенчатая система осушки. Если потребление воздуха происходит в непосредственной близости от установки (то есть длина пневмомагистрали невелика), для удаления излишней влаги можно использовать воздушный доохладитель в комплекте с циклонным сепаратором. Сжатый воздух попадает в доохладитель, где потоком холодного воздуха от вентилятора, его температура понижается на 15-20°С по сравнению с первоначальной. На данном этапе основная влага сконденсируется и удалится через клапан автоматического слива. Далее воздух поступает в циклонный влагосепаратор, где остатки конденсата удаляются под действием центробежных сил. Данный тип осушения является самым бюджетным и применяется в случае, если требуется точка росы не ниже 10°С. В случае, если температура окружающей среды в цехе, где установлено оборудование, может опускаться ниже 10°С или длина пневмомагистрали достаточно велика, вместо циклонного сепаратора необходимо использовать осушитель рефрижераторного типа. Принцип работы рефрижераторного осушителя основан на взаимодействии сжатого воздуха, поступающего из компрессора с хладагентом, находящимся в осушителе. При испарении хладагента происходит понижение температуры сжатого воздуха до 3°С, далее воздух нагревается обратным потоком до температуры на 10-15°С ниже температуры окружающей среды. Таким образом, если температура в компрессорном цехе не будет опускаться ниже 3°С, конденсат образовываться не будет. При использовании винтового компрессора, для достижения точки росы +3°С достаточно использовать только рефрижераторный осушитель, так как концевой доохладитель входит в состав винтовой компрессорной установки. Если в помещении, где находится оборудование, температура опускается до 0°С, либо трубопровод проходит по улице, для эффективного удаления конденсата необходимо использовать адсорбционные осушители. Принцип работы данного типа осушителей основан на поглощении влаги специальным веществом – адсорбентом, находящимся в двух колоннах. Адсорбционные осушители выпускаются на два варианта точки росы: -40°С (в качестве адсорбента используется силикагель) и -70°С (в качестве адсорбента используется молекулярное сито). Установки с точкой росы -40°С чаще всего используются в промышленности, с точкой росы -70°С - в медицине и пищевом производстве. Сжатый воздух, насыщенный влагой, поступает в колонну с адсорбентом, где поглощается конденсат, а сухой воздух далее поступает в пневмосеть.

Компания ГК НТЦ является официальным дистрибьютором ведущих мировых производителей компрессорного оборудования и оборудования воздухоподготовки. Наши сотрудники всегда помогут Вам с подбором оборудования, проконсультируют по вопросам эксплуатации. Технические специалисты компании на высоком уровне выполнят монтаж и техническое обслуживание компрессорного оборудования. С широким ассортиментом осушителей, техническими характеристиками Вы можете подробнее ознакомиться в разделе нашего сайта:

Купить осушитель сжатого воздуха – доставка со склада в Нижнем Новгороде  

Назад

© 2006-2018 ООО "ГК НТЦ"
Представленная на сайте информация не является публичной офертой.
Цены на продукцию можно уточнить у менеджеров компании ГК НТЦ по
телефону +7 831 413-77-41

Адрес: г. Нижний Новгород
ул. Адмирала Нахимова, д. 13АН

E-mail: compressor@ntc-nn.ru
Телефон:+7 (831) 413-77-41
Смотреть все контакты